Mechanical Analysis of Sandwich Plates with Lattice Metal Composite Cores

Journal article


Marino, F., Pawlik, Marzena and Valvano, Stefano 2024. Mechanical Analysis of Sandwich Plates with Lattice Metal Composite Cores. Spectrum of Mechanical Engineering and Operational Research. 1 (1), pp. 44-63. https://doi.org/10.31181/smeor1120244
AuthorsMarino, F., Pawlik, Marzena and Valvano, Stefano
Abstract

This study investigates the modal and static behaviour of sandwich panels with lattice core structures, comparing the real cellular solid structures’ response with an equivalent homogenised model. The mechanical model has been described through the Finite Element Method (FEM), and 3D elements with reduced integration have been employed to guarantee an accurate description of skins and the lattice geometry. Different Body Centred Cubic (BCC) cell configurations have been considered: standard metal BCC cell, metal BCC cell with waved struts, standard metal composite BCC cell. Depending on the configuration, the homogenised materials showed isotropic or orthotropic properties. The composite core has been modelled using two different materials, namely an Aluminium matrix with an AlSiC filler, which is enclosed inside the other hence constituting the BCC cell’s strut. A free-vibration and static analysis parametric study has been conducted varying the strut’s diameter, the strut’s waviness and the thickness ratio of the composite struts. For the static analysis, a multiscale approach has been adopted; a first step considering the whole homogenised sandwich panel and a second step comparing the multiscale results of the homogenised model and those of real structure considering a small portion of the panel. Results reveal insights into the effects of core structure parameters on the mechanical response of sandwich panels, aiding in design optimisation and structural enhancement.

KeywordsBCC; Lattice; Homogenised; Multiscale; Sandwich Structure; Finite Element Analysis
Year2024
JournalSpectrum of Mechanical Engineering and Operational Research
Journal citation1 (1), pp. 44-63
PublisherScientific Oasis
ISSN3042-0288
Digital Object Identifier (DOI)https://doi.org/10.31181/smeor1120244
Web address (URL)http://smeor-journal.org/index.php/smeor/article/view/4
Output statusPublished
Publication dates22 May 2024
Publication process dates
Deposited27 Jun 2024
Permalink -

https://repository.derby.ac.uk/item/q70v5/mechanical-analysis-of-sandwich-plates-with-lattice-metal-composite-cores

  • 47
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Extreme temperature influence on low velocity impact damage and residual flexural properties of CFRP
Bavasso, I., Sergi, C., Ferrante, L., Pawlik, M., Lu, Y., Lampani, L., Trillo, J. and Sarasini, F. 2024. Extreme temperature influence on low velocity impact damage and residual flexural properties of CFRP. Polymer Composites. pp. 1-16. https://doi.org/10.1002/pc.29029
Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels
Marzena Pawlik, Urvashi Gunputh, Daniel Odiyi, Sarah Odofin, Huirong Le, Paul Wood, Angelo Maligno and Yiling Lu 2024. Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels. Materials. 17 (15), pp. 1-14. https://doi.org/10.3390/ma17153842
Experimental identification of yield surface for additively manufactured stainless steel 316L under tension–compression-torsion conditions considering its printing orientation
Kopec, M., Dubey, V. P., Pawlik, M., Wood, P. and Kowalewski, Z. L. 2024. Experimental identification of yield surface for additively manufactured stainless steel 316L under tension–compression-torsion conditions considering its printing orientation. Manufacturing Letters. 41, pp. 28-32. https://doi.org/10.1016/j.mfglet.2024.07.003
Comparing Bio-Ester and Mineral-Oil Emulsions on Tool Wear and Surface Integrity in Finish Turning a Ni-Based Superalloy
Paul Wood, Fathi Boud, Andrew Mantle, Wayne Carter, Syed Hossain, Urvashi Gunputh, Marzena Pawlik, Yiling Lu, José Díaz-Álvarez and María Henar Miguélez 2024. Comparing Bio-Ester and Mineral-Oil Emulsions on Tool Wear and Surface Integrity in Finish Turning a Ni-Based Superalloy. Lubricants. 12 (5), pp. 1-22. https://doi.org/10.3390/lubricants12050164
Long Sump Life Effects of a Naturally Aged Bio-Ester Oil Emulsion on Tool Wear in Finish Turning a Ni-Based Superalloy
Paul Wood, Andrew Mantle, Fathi Boud, Carter, W., Gunputh, U., Pawlik, M., Lu, Y., José Díaz-Álvarez and María Henar Miguélez Garrido Long Sump Life Effects of a Naturally Aged Bio-Ester Oil Emulsion on Tool Wear in Finish Turning a Ni-Based Superalloy. Metals. https://doi.org/10.3390/met13091610
Effect of Powder Bed Fusion Laser Sintering on Dimensional Accuracy and Tensile Properties of Reused Polyamide 11
Gunputh, U., Williams, G., Pawlik, M., Lu, Y. and Wood, P. 2023. Effect of Powder Bed Fusion Laser Sintering on Dimensional Accuracy and Tensile Properties of Reused Polyamide 11. Polymers. https://doi.org/10.3390/polym15234602
Lattice Core FEM Simulation with a Modified-Beam Approach
Tumino, D., Alaimo, A., Orlando, C., Valvano, S. and Vindigni, C.R. 2023. Lattice Core FEM Simulation with a Modified-Beam Approach. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing JCM 2022: Advances on Mechanics, Design Engineering and Manufacturing IV. Springer, Cham. https://doi.org/10.1007/978-3-031-15928-2_83
Characterisation of impact resistance of composite reinforced by hybridised carbon-flax fibres in polyfurfuryl alcohol resin
Lu, Y., Pawlik, M., Ganapathi, S. P., Wood, P., Gunputh, U. and Le, H. 2023. Characterisation of impact resistance of composite reinforced by hybridised carbon-flax fibres in polyfurfuryl alcohol resin. The 2nd International Conference on Mechanical Automation and Engineering Materials (MAEM 2023) . IOP Publishing. https://doi.org/10.1088/1742-6596/2612/1/012013
Prediction of carbon nanotubes reinforced interphase properties in fuzzy fibre reinforced polymer via inverse analysis and optimisation
Pawlik, M., Le, H., Wood, P. and Lu, Y. 2023. Prediction of carbon nanotubes reinforced interphase properties in fuzzy fibre reinforced polymer via inverse analysis and optimisation. Computational Material Science. 231, pp. 1-11. https://doi.org/10.1016/j.commatsci.2023.112548
Mechanical properties of BCC lattice cells with waved struts
Tumino, D., Alaimo, A., Mantegna, G., Orlando, C. and Valvano, S. 2023. Mechanical properties of BCC lattice cells with waved struts. International Journal on Interactive Design and Manufacturing (IJIDeM). pp. 1-14. https://doi.org/10.1007/s12008-023-01359-9
Thermo-Mechanical Structural Optimisation of a Chemical Propulsion Satellite Thruster Using Lattice Structures
Valvano, S. and Maligno, A. 2023. Thermo-Mechanical Structural Optimisation of a Chemical Propulsion Satellite Thruster Using Lattice Structures. X International Conference of Computational Methods for Coupled Problems in Science and Engineering COUPLED2023, Chania, Crete, Greece, JUNE 5 - 7, 2023.
Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy
Valvano, S., Canale, G., Maligno, A. and Wood, P. 2023. Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy. The Fourth International Conference on Damage Mechanics, Baton Rouge, Louisiana, USA, MAY 15 18, 2023.
Higher-order models for the passive damping analysis of variable-angle-tow composite plates
Valvano, S., Alaimo, A. and Orlando, C. 2023. Higher-order models for the passive damping analysis of variable-angle-tow composite plates. Computers & Structures. 280, pp. 1-8. https://doi.org/10.1016/j.compstruc.2023.106992
A Preliminary Study on the Effect of Strut Waviness on the Mechanical Properties of BCC Lattice Unit Cells
Tumino, D., Alaimo, A., Orlando, C. and Valvano, S. 2022. A Preliminary Study on the Effect of Strut Waviness on the Mechanical Properties of BCC Lattice Unit Cells. International Conference on Design, Simulation, Manufacturing: The Innovation Exchange ADM 2021: Design Tools and Methods in Industrial Engineering II. Springer, Cham. https://doi.org/10.1007/978-3-030-91234-5_44
Design of multilayered VAT panels by means of higher-order plate elements
Alaimo, A., Mantegna, G., Orlando, C., Tumino, D. and Valvano, S. 2022. Design of multilayered VAT panels by means of higher-order plate elements. CEAS Aeronautical Journal . 13, p. 677–68. https://doi.org/10.1007/s13272-022-00588-0
Design and Manufacture of One-Size-Fits-All Healthcare Face Shields for the NHS During the COVID-19 Pandemic
Gunputh, U., Williams, G., Leighton, A., Carter, W., Varasteh, H., Pawlik, M., Lu, Y., Sims, R., Lyons, M., Clementson, J., Tripathi, G., Nick Chambers, Matt Roe and Wood, P. 2022. Design and Manufacture of One-Size-Fits-All Healthcare Face Shields for the NHS During the COVID-19 Pandemic. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4258668
On the Lubricity and Comparative Life Cycle of Biobased Synthetic and Mineral Oil Emulsions in Machining Titanium Ti-6Al-4V at Low Cutting Speed
Wood, P., Boud, F., Carter, W., Varasteh, H., Gunputh, U., Pawlik, M., Clementson, J., Lu, Y. and Hossain, S. 2022. On the Lubricity and Comparative Life Cycle of Biobased Synthetic and Mineral Oil Emulsions in Machining Titanium Ti-6Al-4V at Low Cutting Speed. Journal of Manufacturing and material processing. 6 (6), pp. 1-16. https://doi.org/10.3390/jmmp6060154
Surface engineering of carbon fibre/epoxy composites with woven steel mesh for adhesion strength enhancement
Pawlik, M., Cheah, L.Y.Y, Gunputh, U., Le, H., Wood, P. and Lu, Y. 2022. Surface engineering of carbon fibre/epoxy composites with woven steel mesh for adhesion strength enhancement. International Journal of Adhesion and Adhesives. 114, pp. 1-8. https://doi.org/10.1016/j.ijadhadh.2022.103105
BCC lattice cell structural characterization
Alaimo, A., Marino, F. and Valvano, S. 2021. BCC lattice cell structural characterization. Reports in Mechanical Engineering. 2 (1), pp. 77-85. https://doi.org/10.31181/rme200102077v
Analytical higher-order-theories for noise reduction analysis of viscoelastic composite multilayered shells
Alaimo, A., Orlando, C. and Valvano, S. 2021. Analytical higher-order-theories for noise reduction analysis of viscoelastic composite multilayered shells. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 235 (14), pp. 2629-2636. https://doi.org/10.1177/0954406220982334
A simultaneous dual-parameter optical fibre single sensor embedded in a glass fibre/epoxy composite
Fazzi, L., Valvano, S., Alaimo, A. and Groves, R.M. 2021. A simultaneous dual-parameter optical fibre single sensor embedded in a glass fibre/epoxy composite. Composite Structures. 270, p. 114087. https://doi.org/10.1016/j.compstruct.2021.114087
A review of in-situ grown nanocomposite coatings for titanium alloy implants
Gunputh, Urvashi Fowdar, Le, Huirong and Pawlik, Marzena 2020. A review of in-situ grown nanocomposite coatings for titanium alloy implants. Journal of Composites Science. 4 (2), p. 41. https://doi.org/10.3390/jcs4020041
Effects of surface modification and graphene nanoplatelet reinforcement on adhesive joint of aluminium alloys
Pawlik, Marzena, Lu, Yiling and Le, Huirong 2020. Effects of surface modification and graphene nanoplatelet reinforcement on adhesive joint of aluminium alloys. International Journal of Adhesion and Adhesives. https://doi.org/10.1016/j.ijadhadh.2020.102591
Modal analysis of stiffened plates with advanced 2D finite element model
Alaimo, A. and Valvano, S. 2020. Modal analysis of stiffened plates with advanced 2D finite element model. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019 23–28 September 2019 Rhodes, Greece. https://doi.org/10.1063/5.0030864
Analytical analysis of sound transmission in passive damped multilayered shells
Valvano, S., Alaimo, A. and Orlando, C. 2020. Analytical analysis of sound transmission in passive damped multilayered shells. Composite Structures. 253, p. 112742. https://doi.org/10.1016/j.compstruct.2020.112742
Effects of the graphene nanoplatelets reinforced interphase on mechanical properties of carbon fibre reinforced polymer – A multiscale modelling study
Le, Huirong, Lu, Yiling, Pawlik, Marzena and Marzena, Pawlik 2019. Effects of the graphene nanoplatelets reinforced interphase on mechanical properties of carbon fibre reinforced polymer – A multiscale modelling study. Composites Part B: Engineering. 177, p. 107097. https://doi.org/10.1016/j.compositesb.2019.107097
Design of a noise reduction passive control system based on viscoelastic multilayered plate using PDSO
Valvano, S., Orlando, C. and Alaimo, A. 2019. Design of a noise reduction passive control system based on viscoelastic multilayered plate using PDSO. Mechanical Systems and Signal Processing. 123, pp. 153-173. https://doi.org/10.1016/j.ymssp.2019.01.011
Sound Transmission Analysis of Viscoelastic Composite Multilayered Shells Structures
Valvano, S., Alaimo, A. and Orlando, C. 2019. Sound Transmission Analysis of Viscoelastic Composite Multilayered Shells Structures. Aerospace. 6 (6), p. 69. https://doi.org/10.3390/aerospace6060069
Analytical frequency response solution for composite plates embedding viscoelastic layers
Alaimo, A., Orlando, C. and Valvano, S. 2019. Analytical frequency response solution for composite plates embedding viscoelastic layers. Aerospace Science and Technology. 92, pp. 429-445. https://doi.org/10.1016/j.ast.2019.06.021
An alternative approach for modal analysis of stiffened thin-walled structures with advanced plate elements
Alaimo, A., Orlando, C. and Valvano, S. 2019. An alternative approach for modal analysis of stiffened thin-walled structures with advanced plate elements. European Journal of Mechanics - A/Solids. 77, p. 103820. https://doi.org/10.1016/j.euromechsol.2019.103820
Effects of the graphene on the mechanical properties of fibre reinforced polymer - a numerical and experimental study
Pawlik, Marzena 2019. Effects of the graphene on the mechanical properties of fibre reinforced polymer - a numerical and experimental study. Thesis https://doi.org/10.48773/94384
Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements
Pagani, A., Valvano, S. and Carrera, E. 2018. Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements. Journal of Sandwich Structures and Materials. 20 (1), pp. 4-41. https://doi.org/10.1177/109963621665098
Higher-order shell element for the static and free-vibration analysis of sandwich structures
Carrera, E., Valvano, S. and Filippi, M. 2018. Higher-order shell element for the static and free-vibration analysis of sandwich structures. ASME 2018 International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). ASME. https://doi.org/10.1115/IMECE2018-86784
Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics
Carrera, E., Valvano, S. and Kulikov, G.M. 2018. Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics. International Journal of Smart and Nano Materials. 9 (1), pp. 1-33. https://doi.org/10.1080/19475411.2017.1414084
Modal analysis of delaminated plates and shells using Carrera Unified Formulation–MITC9 shell element
Kumar, K.S., Harursampath, D., Carrera, E., Cinefra, M. and Valvano, S. 2018. Modal analysis of delaminated plates and shells using Carrera Unified Formulation–MITC9 shell element. Mechanics of Advanced Materials and Structures. 25 (8), pp. 681-697. https://doi.org/10.1080/15376494.2017.1302024
Multilayered plate elements with node-dependent kinematics for electro-mechanical problems
Carrera, E., Valvano, S. and Kulikov, G.M. 2018. Multilayered plate elements with node-dependent kinematics for electro-mechanical problems. International Journal of Smart and Nano Materials. 9 (4), pp. 279-317. https://doi.org/10.1080/19475411.2017.1376722
Classical, higher-order, zig-zag and variable kinematic shell elements for the analysis of composite multilayered structures
Carrera, E., Valvano, S. and Filippi, M. 2018. Classical, higher-order, zig-zag and variable kinematic shell elements for the analysis of composite multilayered structures. European Journal of Mechanics - A/Solids. 72, pp. 97-110. https://doi.org/10.1016/j.euromechsol.2018.04.015
Analysis of multilayered structures embedding viscoelastic layers by higher-order, and zig-zag plate elements
Filippi, M., Carrera, E. and Valvano, S. 2018. Analysis of multilayered structures embedding viscoelastic layers by higher-order, and zig-zag plate elements. Composites Part B: Engineering. 154, pp. 77-89. https://doi.org/10.1016/j.compositesb.2018.07.054
A variable ESL/LW kinematic plate formulation for free-vibration thermoelastic analysis of laminated structures
Carrera, E. and Valvano, S. 2018. A variable ESL/LW kinematic plate formulation for free-vibration thermoelastic analysis of laminated structures. Journal of Thermal Stresses. 42 (4), pp. 452-474. https://doi.org/10.1080/01495739.2018.1474513
A multilayered plate elements accounting node-dependent kinematics for static analysis of piezoelectric structures
Carrera, E., Kulikov, G.M. and Valvano, S. 2017. A multilayered plate elements accounting node-dependent kinematics for static analysis of piezoelectric structures. 8th Conference on Smart Structures and Materials, SMART 2017 and 6th International Conference on Smart Materials and Nanotechnology in Engineering, SMN 2017. International Center for Numerical Methods in Engineering.
Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures
Carrera, E., Pagani, A. and Valvano, S. 2017. Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures. Composites Part B: Engineering. 111, pp. 294-314. https://doi.org/10.1016/j.compositesb.2016.12.001
Multilayered plate elements accounting for refined theories and node-dependent kinematics
Carrera, E., Pagani, A. and Valvano, S. 2017. Multilayered plate elements accounting for refined theories and node-dependent kinematics. Composites Part B: Engineering. 114, pp. 189-210. https://doi.org/10.1016/j.compositesb.2017.01.022
Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures
Valvano, S. and Carrera, E. 2017. Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures. Facta Universitatis, Series: Mechanical Engineering. 15 (1), pp. 1-30. https://doi.org/10.22190/FUME170315001V
A variable kinematic shell formulation applied to thermal stress of laminated structures
Carrera, E. and Valvano, S. 2017. A variable kinematic shell formulation applied to thermal stress of laminated structures. Journal of Thermal Stresses. 40 (7), pp. 803-827. https://doi.org/10.1080/01495739.2016.1253439
Analysis of laminated composite structures with embedded piezoelectric sheets by variable kinematic shell elements
Carrera, E. and Valvano, S. 2017. Analysis of laminated composite structures with embedded piezoelectric sheets by variable kinematic shell elements. Journal of Intelligent Material Systems and Structures. 28 (20), pp. 2959-2987. https://doi.org/10.1177/1045389X17704913
Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element
Cinefra, M., Valvano, S. and Carrera, E. 2016. Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element. Journal of Thermal Stresses. 39 (2), pp. 121-141. https://doi.org/10.1080/01495739.2015.1123591
Analysis of laminated composites and sandwich structures by trigonometric, exponential and miscellaneous polynomials and a MITC9 plate element
Filippi, M., Petrolo, M., Valvano, S. and Carrera, E. 2016. Analysis of laminated composites and sandwich structures by trigonometric, exponential and miscellaneous polynomials and a MITC9 plate element. Composite Structures. 150, pp. 103-114. https://doi.org/10.1016/j.compstruct.2015.12.038
A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites
Cinefra, M. and Valvano, S. 2016. A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites. Mechanics of Advanced Materials and Structures. 23 (11), pp. 1312-1325. https://doi.org/10.1080/15376494.2015.1070304
Variable kinematic shell elements for the analysis of electro-mechanical problems
Cinefra, M., Carrera, E. and Valvano, S. 2015. Variable kinematic shell elements for the analysis of electro-mechanical problems. Mechanics of Advanced Materials and Structures. 22 (1-2), pp. 77-106. https://doi.org/10.1080/15376494.2014.908042
Heat conduction and thermal stress analysis of laminated composites by a variable kinematic MITC9 shell element
Cinefra, M., Valvano, S. and Carrera, E. 2015. Heat conduction and thermal stress analysis of laminated composites by a variable kinematic MITC9 shell element. Curved and Layered Structures. 2 (1), pp. 301-320. https://doi.org/10.1515/cls-2015-0017
A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches
Cinefra, M., Valvano, S. and Carrera, E. 2015. A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches. International Journal of Smart and Nano Materials. 6 (2), pp. 85-104. https://doi.org/10.1080/19475411.2015.1037377