Forming low-cost, high quality carbon tows for automotive application
Journal article
Authors | Choudhry, R. |
---|---|
Abstract | Carbon fiber reinforced composites are widely used in many industries due to their high performance. Its application in the aerospace industry has increased significantly, however, in mass produced automobile sector it is still limited. The current production of carbon fiber tow is slow and capital intensive. Thus, carbon manufactures produce higher tow counts to increase production rate to reduce its cost. In order to offset the higher cost of carbon fiber composite, an innovative and unique approach has been developed. The higher tow count carbon spools are split into smaller tow counts. Due to the delicate nature of carbon fiber, it is important to control the filamentation during that process. Different splitting process line strategies have been developed in this research work for understanding the process limitations and challenges involved. The process was made feasible for production by developing a fully automated process line with a laser feedback system. The system splits a 12K spool into two 6K tows. The quality of the 6K split tows has been determined statistically by recording real time data from the laser during the splitting process. It was demonstrated that the proposed process effectively controls filamentation and produces consistent tow quality. |
Keywords | Composites; Automated tow splitting; Low-cost; Programmable Powder Preform Process (P4) |
Year | 2018 |
Journal | IOP Conference Series: Materials Science and Engineering |
Publisher | IOP Publishing |
ISSN | 1757-899X |
Digital Object Identifier (DOI) | https://doi.org/10.1088/1757-899x/406/1/012021 |
Web address (URL) | http://dx.doi.org/10.1088/1757-899x/406/1/012021 |
Publication dates | 21 Sep 2018 |
Publication process dates | |
Deposited | 07 Nov 2018, 12:02 |
Rights | Archived with thanks to IOP Conference Series: Materials Science and Engineering |
Contributors | University of Derby, The University of Manchester and Bright Lite Structures (BLS), UK |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/93y33/forming-low-cost-high-quality-carbon-tows-for-automotive-application
Download files
66
total views36
total downloads5
views this month0
downloads this month
Export as
Related outputs
A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites
Odiyi, D., Sharif, T., Choudhry, R., Mallik, S. and Shah S.Z.H 2023. A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites. Composites Part B: Engineering. 267, pp. 1-15. https://doi.org/10.1016/j.compositesb.2023.111034Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects
Shah, S. Z. H., Lee, J., Megat-Yusoff, P.S.M., Hussain, S. Z., Sharif, T. and Choudhry, R. 2023. Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects. Composite Structures. 318, pp. 1-17. https://doi.org/10.1016/j.compstruct.2023.117109Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites
Shah, S.Z.H., Megat-Yusoff, P.S.M., Sharif, T., Hussain, S.Z. and Choudhry, R.S. 2022. Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites. Mechanics of Materials. 175, pp. 1-9. https://doi.org/10.1016/j.mechmat.2022.104478Off-Axis and On-Axis Performance of Novel Acrylic Thermoplastic (Elium®) 3D Fibre-Reinforced Composites under Flexure Load
Shah, S.Z.H, Megat-Yusoff P.S.M., Karuppanan, S, Choudhry, R.S. and Sajid, Z. 2022. Off-Axis and On-Axis Performance of Novel Acrylic Thermoplastic (Elium®) 3D Fibre-Reinforced Composites under Flexure Load. Polymers. 14 (11), p. 2225. https://doi.org/10.3390/polym14112225Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics
Odiyi, D., Sharif, T., Choudhry, R.S. and Mallik, S. 2022. Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics. Thermochimica Acta. 708, pp. 1-14. https://doi.org/10.1016/j.tca.2021.179133
Compression and buckling after impact response of resin-infused thermoplastic and thermoset 3D woven composites
Shah, S.Z.H, Megat-Yusoff, P.S.M, Karuppanan, S, Choudhry, Rizwan Saeed, Din, I.U, Othman, A.R, Sharp, K and Gerard, P 2020. Compression and buckling after impact response of resin-infused thermoplastic and thermoset 3D woven composites. Composites Part B: Engineering. 207, p. 108592. https://doi.org/10.1016/j.compositesb.2020.108592Mechanical Properties and Failure Mechanisms of Novel Resin-infused Thermoplastic and Conventional Thermoset 3D Fabric Composites
Shah, Syed Zulfiqar Hussain, Megat-Yusoff, Puteri Sri Melor, Karuppanan, Saravanan, Choudhry, Rizwan Saeed, Ahmad, Faiz and Sajid, Zubair 2021. Mechanical Properties and Failure Mechanisms of Novel Resin-infused Thermoplastic and Conventional Thermoset 3D Fabric Composites. Applied Composite Materials. 29, p. 515–545. https://doi.org/10.1007/s10443-021-09980-1Multiscale damage modelling of 3D woven composites under static and impact loads
Shah, S. Z. H, Megat-Yusoff, P.S.M, Karuppanan, S, Choudhry, R.S and Sajid, Z 2021. Multiscale damage modelling of 3D woven composites under static and impact loads. Composites Part A: Applied Science and Manufacturing. 151. https://doi.org/10.1016/j.compositesa.2021.106659Experimental investigation on the quasi-static crush performance of resin-infused thermoplastic 3D fibre-reinforced composites
Shah, S. Z. H, Megat-Yusoff, P.S.M, Choudhry, R.S, Sajid, Zubair and Din, I.U 2021. Experimental investigation on the quasi-static crush performance of resin-infused thermoplastic 3D fibre-reinforced composites. Composites Communications. 28. https://doi.org/10.1016/j.coco.2021.100916
Identification of an effective nondestructive technique for bond defect determination in laminate composites—A technical review
Asif, Muhammad, Khan, Muhammad A, Khan, Sohaib Z, Khan, Kamran A and Choudhry, Rizwan Saeed 2018. Identification of an effective nondestructive technique for bond defect determination in laminate composites—A technical review. Journal of Composite Materials. 52 (26), pp. 3589-3599. https://doi.org/10.1177/0021998318766595
Performance comparison of resin-infused thermoplastic and thermoset 3D fabric composites under impact loading
Choudhry, Rizwan Saeed, Shah, S. Z. H., Megat-Yusoff, P.S.M., Karuppanan, S., Ahmad, F., Sajid, Z., Gerard, P. and Sharp, K. 2020. Performance comparison of resin-infused thermoplastic and thermoset 3D fabric composites under impact loading. International Journal of Mechanical Sciences. https://doi.org/10.1016/j.ijmecsci.2020.105984
Buckling and strength analysis of panels with discrete stiffness tailoring
Culliford, Lucie, Choudhry, Rizwan Saeed, Butler, Richard and Rhead, Andrew T. 2019. Buckling and strength analysis of panels with discrete stiffness tailoring. Composite Structures. 234, p. 111672. https://doi.org/10.1016/j.compstruct.2019.111672A new approach for strength and stiffness prediction of discontinuous fibre reinforced composites (DFC)
Shah, S.Z.H, Choudhry, Rizwan Saeed, Mahadzir, Shuhaimi and S.Z.H., Shah 2019. A new approach for strength and stiffness prediction of discontinuous fibre reinforced composites (DFC). Composites Part B: Engineering. 183, p. 107676. https://doi.org/10.1016/j.compositesb.2019.107676
A plate model for compressive strength prediction of delaminated composites
Choudhry, Rizwan Saeed, Rhead, Andrew T., Nielsen, Mark W.D. and Butler, Richard 2018. A plate model for compressive strength prediction of delaminated composites. Composite Structures. https://doi.org/10.1016/j.compstruct.2018.11.066
Predicting the effect of voids on mechanical properties of woven composites
Choudhry, R. 2018. Predicting the effect of voids on mechanical properties of woven composites. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/406/1/012007