A new approach for strength and stiffness prediction of discontinuous fibre reinforced composites (DFC)
Journal article
Authors | Shah, S.Z.H, Choudhry, Rizwan Saeed, Mahadzir, Shuhaimi and S.Z.H., Shah |
---|---|
Abstract | A new modelling methodology for strength and stiffness prediction of discontinuous fibre-reinforced composites (DFC) is proposed. This has been validated for both thermoplastic and thermoset, prepreg based, carbon fibre reinforced, random DFC laminates having high volume fraction, by implementing it in a commercial FE solver. The methodology involves explicit generation of internal architecture of DFC through an algorithm which is efficient (faster model generation and solution), easily customizable and scalable. It captures many of the realistic features of the DFC such as variation in volume fraction, interlacing of strands, random orientation and thickness variation of strands. Thus, the model accounts for the natural mechanical property variation, which is characteristic of random DFCs and was found to be conservative in terms of prediction of tensile strength and stiffness for all the validation cases considered. It is generic in the sense that it can be easily extended to generate preferentially aligned and hybrid DFC laminates. |
Keywords | Discontinuous reinforcement; Composites Finite element analysis; Micro-mechanics; Embedded finite element |
Year | 2019 |
Journal | Composites Part B: Engineering |
Journal citation | 183, p. 107676 |
Publisher | Elsevier |
ISSN | 13598368 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.compositesb.2019.107676 |
Web address (URL) | http://hdl.handle.net/10545/624380 |
hdl:10545/624380 | |
Publication dates | 03 Dec 2019 |
Publication process dates | |
Deposited | 09 Jan 2020, 15:50 |
Accepted | 02 Dec 2019 |
Rights | © 2019 Elsevier Ltd. All rights reserved. |
Contributors | University of Derby and Universiti Teknologi, Malaysia |
File | |
File | File Access Level Open |
https://repository.derby.ac.uk/item/944q8/a-new-approach-for-strength-and-stiffness-prediction-of-discontinuous-fibre-reinforced-composites-dfc
Download files
44
total views31
total downloads0
views this month1
downloads this month
Export as
Related outputs
A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites
Odiyi, D., Sharif, T., Choudhry, R., Mallik, S. and Shah S.Z.H 2023. A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites. Composites Part B: Engineering. 267, pp. 1-15. https://doi.org/10.1016/j.compositesb.2023.111034Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects
Shah, S. Z. H., Lee, J., Megat-Yusoff, P.S.M., Hussain, S. Z., Sharif, T. and Choudhry, R. 2023. Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects. Composite Structures. 318, pp. 1-17. https://doi.org/10.1016/j.compstruct.2023.117109Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites
Shah, S.Z.H., Megat-Yusoff, P.S.M., Sharif, T., Hussain, S.Z. and Choudhry, R.S. 2022. Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites. Mechanics of Materials. 175, pp. 1-9. https://doi.org/10.1016/j.mechmat.2022.104478Off-Axis and On-Axis Performance of Novel Acrylic Thermoplastic (Elium®) 3D Fibre-Reinforced Composites under Flexure Load
Shah, S.Z.H, Megat-Yusoff P.S.M., Karuppanan, S, Choudhry, R.S. and Sajid, Z. 2022. Off-Axis and On-Axis Performance of Novel Acrylic Thermoplastic (Elium®) 3D Fibre-Reinforced Composites under Flexure Load. Polymers. 14 (11), p. 2225. https://doi.org/10.3390/polym14112225Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics
Odiyi, D., Sharif, T., Choudhry, R.S. and Mallik, S. 2022. Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics. Thermochimica Acta. 708, pp. 1-14. https://doi.org/10.1016/j.tca.2021.179133
Compression and buckling after impact response of resin-infused thermoplastic and thermoset 3D woven composites
Shah, S.Z.H, Megat-Yusoff, P.S.M, Karuppanan, S, Choudhry, Rizwan Saeed, Din, I.U, Othman, A.R, Sharp, K and Gerard, P 2020. Compression and buckling after impact response of resin-infused thermoplastic and thermoset 3D woven composites. Composites Part B: Engineering. 207, p. 108592. https://doi.org/10.1016/j.compositesb.2020.108592Mechanical Properties and Failure Mechanisms of Novel Resin-infused Thermoplastic and Conventional Thermoset 3D Fabric Composites
Shah, Syed Zulfiqar Hussain, Megat-Yusoff, Puteri Sri Melor, Karuppanan, Saravanan, Choudhry, Rizwan Saeed, Ahmad, Faiz and Sajid, Zubair 2021. Mechanical Properties and Failure Mechanisms of Novel Resin-infused Thermoplastic and Conventional Thermoset 3D Fabric Composites. Applied Composite Materials. 29, p. 515–545. https://doi.org/10.1007/s10443-021-09980-1Multiscale damage modelling of 3D woven composites under static and impact loads
Shah, S. Z. H, Megat-Yusoff, P.S.M, Karuppanan, S, Choudhry, R.S and Sajid, Z 2021. Multiscale damage modelling of 3D woven composites under static and impact loads. Composites Part A: Applied Science and Manufacturing. 151. https://doi.org/10.1016/j.compositesa.2021.106659Experimental investigation on the quasi-static crush performance of resin-infused thermoplastic 3D fibre-reinforced composites
Shah, S. Z. H, Megat-Yusoff, P.S.M, Choudhry, R.S, Sajid, Zubair and Din, I.U 2021. Experimental investigation on the quasi-static crush performance of resin-infused thermoplastic 3D fibre-reinforced composites. Composites Communications. 28. https://doi.org/10.1016/j.coco.2021.100916
Identification of an effective nondestructive technique for bond defect determination in laminate composites—A technical review
Asif, Muhammad, Khan, Muhammad A, Khan, Sohaib Z, Khan, Kamran A and Choudhry, Rizwan Saeed 2018. Identification of an effective nondestructive technique for bond defect determination in laminate composites—A technical review. Journal of Composite Materials. 52 (26), pp. 3589-3599. https://doi.org/10.1177/0021998318766595
Performance comparison of resin-infused thermoplastic and thermoset 3D fabric composites under impact loading
Choudhry, Rizwan Saeed, Shah, S. Z. H., Megat-Yusoff, P.S.M., Karuppanan, S., Ahmad, F., Sajid, Z., Gerard, P. and Sharp, K. 2020. Performance comparison of resin-infused thermoplastic and thermoset 3D fabric composites under impact loading. International Journal of Mechanical Sciences. https://doi.org/10.1016/j.ijmecsci.2020.105984
Buckling and strength analysis of panels with discrete stiffness tailoring
Culliford, Lucie, Choudhry, Rizwan Saeed, Butler, Richard and Rhead, Andrew T. 2019. Buckling and strength analysis of panels with discrete stiffness tailoring. Composite Structures. 234, p. 111672. https://doi.org/10.1016/j.compstruct.2019.111672
A plate model for compressive strength prediction of delaminated composites
Choudhry, Rizwan Saeed, Rhead, Andrew T., Nielsen, Mark W.D. and Butler, Richard 2018. A plate model for compressive strength prediction of delaminated composites. Composite Structures. https://doi.org/10.1016/j.compstruct.2018.11.066
Forming low-cost, high quality carbon tows for automotive application
Choudhry, R. 2018. Forming low-cost, high quality carbon tows for automotive application. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/406/1/012021
Predicting the effect of voids on mechanical properties of woven composites
Choudhry, R. 2018. Predicting the effect of voids on mechanical properties of woven composites. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/406/1/012007