Describing Pulmonary Nodules Using 3D Clustering
Journal article
Authors | Al-Funjan, A., Farid Meziane and Aspin, R. |
---|---|
Abstract | After detecting a node (tumor) on medical images, it is necessary to determine its shape, localization and type. This is important for the choice of the type of clinical intervention and other aspects of the work of radiologists. Computed detection systems effectively locate nodes using 2D computed tomography (CT) imaging of the lungs. However, a more detailed description of the node (tumor) is still a big problem. In the framework of this work, three-dimensional clustering was performed on volumetric CT images, which give an idea of the node and its structure. These materials were used to describe the development of the node in successive sections of the lung. Combined algorithms for clustering and determining the characteristics of nodes in 3D visualization. Some 3D features were applied to objects grouped by K-means CT lung imaging. This approach provides a visual study of the three-dimensional shape and location of the node. This study is mainly focused on clustering in 3D in order to obtain complex information missing from the radiologist's report. In addition, to evaluate the proposed system, we used a 3D density clustering algorithm for spatial data with the presence of noise and another 3D application - a graph. The proposed method detected a difficult case and automatically provided information about the types of nodes (globular, juxtapleural, and pleural-caudal). The algorithm is tested on standard data, Based on the proposed model, it is possible to cluster lung nodes in 3D CT and determine a set of characteristics such as shape, location, and type. |
Keywords | automated 3D clustering ; lung CT ; description of node characteristics |
Year | 2022 |
Journal | Advanced Engineering Research |
Journal citation | 22 (3), pp. 261-271 |
Publisher | Don State Technical University |
ISSN | 2687-1653 |
Digital Object Identifier (DOI) | https://doi.org/10.23947/2687-1653-2022-22-3-261-271 |
Web address (URL) | https://doi.org/10.23947/2687-1653-2022-22-3-261-271 |
Output status | Published |
Publication dates | 13 Oct 2022 |
Publication process dates | |
Accepted | 30 Aug 2022 |
Deposited | 15 Nov 2022 |
https://repository.derby.ac.uk/item/9v35y/describing-pulmonary-nodules-using-3d-clustering
27
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603
A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033