The Impact of Social Influence and Third Party Endorsement on Online Shopping in Saudi Arabia
Journal article
Authors | Haya Alshehri and Farid Meziane |
---|---|
Abstract | It is well documented that social influence and third party endorsements play a significant role in developing trust in E-Commerce. Previous studies have shown that it is relatively true in many countries and across cultures. However, very few studies were conducted in the Middle East and to our knowledge this was the first time to consider family members and friends Recommendation with the context of social influence conducted within Saudi Arabia. The research reported in this paper attempts to investigate whether the findings from previous studies will be similar in Saudi Arabia. Specifically, this study will evaluate the impact of social influence and endorsements on online shopping and whether this plays an important role in increasing online shopping in Saudi Arabia. The results of this study are based on quantitative data collected from a sample of 606 Saudi citizens living in Saudi Arabia. Four factors connected to the impact of social influence and third party endorsements in online shopping are examined. The initial findings of this research confirm that there are similarities with the results of previous studies conducted in other countries. Similarly, the impact of social influence and third party endorsements seems to encourage and support the development of online shopping in Saudi Arabia. |
Keywords | E-Commerce; Saudi Arabia; Family members and Friends Recommendation; Third Party; Quantitative Research |
Year | 2015 |
Journal | Journal of Internet and e-Business Studies |
Journal citation | Vol 2015 (2015, Article: 146746) |
Publisher | IBIMA |
Digital Object Identifier (DOI) | https://doi.org/10.5171/2015.146746 |
Web address (URL) | https://ibimapublishing.com/articles/JIEBS/2015/146746/ |
Output status | Published |
Publication dates | 02 Sep 2015 |
Publication process dates | |
Accepted | 27 Jan 2015 |
Deposited | 07 Jun 2023 |
https://repository.derby.ac.uk/item/9z1yw/the-impact-of-social-influence-and-third-party-endorsement-on-online-shopping-in-saudi-arabia
3
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603
A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Describing Pulmonary Nodules Using 3D Clustering
Al-Funjan, A., Farid Meziane and Aspin, R. 2022. Describing Pulmonary Nodules Using 3D Clustering. Advanced Engineering Research. 22 (3), pp. 261-271. https://doi.org/10.23947/2687-1653-2022-22-3-261-271Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033