A new strategy for case-based reasoning retrieval using classification based on association
Conference paper
Authors | Aljuboori, AS, Meziane, F. and Parsons, DJ |
---|---|
Type | Conference paper |
Abstract | This paper proposes a novel strategy, Case-Based Reasoning Using Association Rules (CBRAR) to improve the performance of the Similarity base Retrieval SBR, classed frequent pattern trees FP-CAR algorithm, in order to disambiguate wrongly retrieved cases in Case-Based Reasoning (CBR). CBRAR use class as-sociation rules (CARs) to generate an optimum FP-tree which holds a value of each node. The possible advantage offered is that more efficient results can be gained when SBR returns uncertain answers. We compare the CBR Query as a pattern with FP-CAR patterns to identify the longest length of the voted class. If the patterns are matched, the proposed strategy can select not just the most similar case but the correct one. Our experimental evaluation on real data from the UCI repository indicates that the proposed CBRAR is a better approach when com-pared to the accuracy of the CBR systems used in our experiments. |
Keywords | Case-Based Reasoning; ; Class Association Rules; ; Frequent pattern trees; ; P-trees; ; Retrieval |
Year | 2016 |
Conference | MLDM: International Conference on Machine Learning and Data Mining in Pattern Recognition |
Publisher | Springer |
Digital Object Identifier (DOI) | https://doi.org/10.1007/978-3-319-41920-6_24 |
Web address (URL) | https://doi.org/10.1007/978-3-319-41920-6_24 |
Journal citation | Vol 9729, pp. 326 - 340 |
ISBN | 978-3-319-41920-6 |
Web address (URL) of conference proceedings | https://link.springer.com/chapter/10.1007/978-3-319-41920-6_24 |
Output status | Published |
Publication dates | 28 Jun 2016 |
Publication process dates | |
Deposited | 05 Jun 2023 |
Editors | Perner, P |
https://repository.derby.ac.uk/item/9z14w/a-new-strategy-for-case-based-reasoning-retrieval-using-classification-based-on-association
4
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603
A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Describing Pulmonary Nodules Using 3D Clustering
Al-Funjan, A., Farid Meziane and Aspin, R. 2022. Describing Pulmonary Nodules Using 3D Clustering. Advanced Engineering Research. 22 (3), pp. 261-271. https://doi.org/10.23947/2687-1653-2022-22-3-261-271Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033