A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Journal article
Authors | Abdalazeima, Alaa and Meziane, Farid |
---|---|
Abstract | In the software development life cycle, requirements engineering is the main process that is derived from users by informal interviews written in natural language by requirements engineers (analysts). The requirements may suffer from incompleteness and ambiguity when transformed into formal or semi-formal models that are not well understood by stakeholders. Hence, the stakeholder cannot verify if the formal or semi-formal models satisfy their needs and requirements. Another problem faced by requirements is that when code and/or designs are updated, it is often the case that requirements and specifically the requirements document are not updated. Hence ending with a requirements document not reflecting the implemented software.Generating requirements from the design and/or implementation document is seen by many researchers as a way to address the latter issue. This paper presents a survey of some works undertaken in the field of generation natural language specifications from object UML model using the support of an ontology. and analyzing the robustness and limitations of these existing approaches. This includes studying the generation of natural language from a formal model, review the generation of natural language from ontologies, and finally reviews studies about check to generate natural language from OntoUML. |
Keywords | Requirements Specification; Natural Language Generation; Object UML Model; Ontology |
Year | 2021 |
Journal | Procedia Computer Science |
Journal citation | 189, pp. 328-334 |
Publisher | Elsevier |
ISSN | 18770509 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.procs.2021.05.102 |
Web address (URL) | http://hdl.handle.net/10545/626344 |
http://creativecommons.org/licenses/by-nd/4.0/ | |
hdl:10545/626344 | |
Publication dates | 14 Jul 2021 |
Publication process dates | |
Deposited | 07 Mar 2022, 12:30 |
Accepted | 12 Apr 2021 |
Rights | © 2021 The Author(s). Published by Elsevier B.V. |
Attribution-NoDerivatives 4.0 International | |
Contributors | University of Bahri, Sudan and University of Derby |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/946x5/a-review-of-the-generation-of-requirements-specification-in-natural-language-using-objects-uml-models-and-domain-ontology
Download files
25
total views56
total downloads0
views this month3
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Describing Pulmonary Nodules Using 3D Clustering
Al-Funjan, A., Farid Meziane and Aspin, R. 2022. Describing Pulmonary Nodules Using 3D Clustering. Advanced Engineering Research. 22 (3), pp. 261-271. https://doi.org/10.23947/2687-1653-2022-22-3-261-271Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033