Arabic machine translation: A survey of the latest trends and challenges

Journal article


Ameur, M.S.H., Meziane, Farid and Guessoum, Ahmed 2020. Arabic machine translation: A survey of the latest trends and challenges. Computer Science Review. 38, p. 100305. https://doi.org/10.1016/j.cosrev.2020.100305
AuthorsAmeur, M.S.H., Meziane, Farid and Guessoum, Ahmed
Abstract

Given that Arabic is one of the most widely used languages in the world, the task of Arabic Machine Translation (MT) has recently received a great deal of attention from the research community. Indeed, the amount of research that has been devoted to this task has led to some important achievements and improvements. However, the current state of Arabic MT systems has not reached the quality achieved for some other languages. Thus, much research work is still needed to improve it. This survey paper introduces the Arabic language, its characteristics, and the challenges involved in its translation. It provides the reader with a full summary of the important research studies that have been accomplished with regard to Arabic MT along with the most important tools and resources that are available for building and testing new Arabic MT systems. Furthermore, the survey paper discusses the current state of Arabic MT and provides some insights into possible future research directions.

KeywordsNatural language processing; Machine Translation; Arabic Machine Translation; Arabic language; Deep learning
Year2020
JournalComputer Science Review
Journal citation38, p. 100305
PublisherElsevier
ISSN15740137
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cosrev.2020.100305
Web address (URL)http://hdl.handle.net/10545/625192
hdl:10545/625192
Publication dates15 Sep 2020
Publication process dates
Deposited23 Sep 2020, 08:14
Accepted04 Sep 2020
Rights

© 2020 Elsevier Inc. All rights reserved.

ContributorsUniversity of Science and Technology Houari Boumediene (USTHB), Algeria and University of Derby
File
File Access Level
Open
File
Permalink -

https://repository.derby.ac.uk/item/94yq9/arabic-machine-translation-a-survey-of-the-latest-trends-and-challenges

Download files

  • 5
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102
Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022
DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. pp. 1-22. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033