A computer-aided diagnosis system for glioma grading using three dimensional texture analysis and machine learning in mri brain tumour
Conference paper
Authors | Al-Zurfi, A.N., Meziane, F. and Aspin, R. |
---|---|
Type | Conference paper |
Abstract | Glioma grading is vital for therapeutic planning where the higher level of glioma is associated with high mortality. It is a challenging task as different glioma grades have mixed morphological characteristics of brain tumour. A computeraided diagnosis (CAD) system based on three-dimensional textural grey level co-occurrence matrix (GLCM) and machine learning is proposed for glioma grading. The purpose of this paper is to assess the usefulness of the 3D textural analysis in establishing a malignancy prediction model for glioma grades. Furthermore, this paper aims to find the best classification model based on textural analysis for glioma grading. The classification system was evaluated using leave-one-out cross-validation technique. The experimental design includes feature extraction, feature selection, and finally the classification that includes single and ensemble classification models in a comparative study. Experimental results illustrate that single and ensemble classification models, can achieve efficient prediction performance based on 3D textural analysis and the classification accuracy result has significantly improved after using feature selection methods. In this paper, we compare the proficiency of applying different angles of 3D textural analysis and different classification models to determine the malignant level of glioma. The obtained sensitivity, accuracy and specificity are 100%, 96.6%, 90% respectively. The prediction system presents an effective approach to assess the malignancy level of glioma with a non-invasive, reproducible and accurate CAD system for glioma grading. |
Keywords | Glioma Grading; Grey level co-occurrence matrix; Machine Learning algorithm; Single and ensemble classification system |
Year | 2019 |
Conference | 2019 3rd International Conference on Bio-engineering for Smart Technologies (BioSMART) |
Journal | BioSMART 2019 - Proceedings: 3rd International Conference on Bio-Engineering for Smart Technologies |
Publisher | IEEE Xplore |
Digital Object Identifier (DOI) | https://doi.org/10.1109/biosmart.2019.8734207 |
Web address (URL) | http://www.scopus.com/inward/record.url?eid=2-s2.0-85068349004&partnerID=MN8TOARS |
Journal citation | (Article: 8734207) |
ISBN | 978-1-7281-3578-6 |
Web address (URL) of conference proceedings | https://ieeexplore.ieee.org/xpl/conhome/8732298/proceeding |
Output status | Published |
Publication dates | |
Online | 13 Jun 2019 |
Publication process dates | |
Deposited | 05 Jun 2023 |
https://repository.derby.ac.uk/item/9z138/a-computer-aided-diagnosis-system-for-glioma-grading-using-three-dimensional-texture-analysis-and-machine-learning-in-mri-brain-tumour
1
total views0
total downloads1
views this month0
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603
A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Describing Pulmonary Nodules Using 3D Clustering
Al-Funjan, A., Farid Meziane and Aspin, R. 2022. Describing Pulmonary Nodules Using 3D Clustering. Advanced Engineering Research. 22 (3), pp. 261-271. https://doi.org/10.23947/2687-1653-2022-22-3-261-271Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033