An adaptable and personalised E-learning system applied to computer science Programmes design
Journal article
Authors | Aeiad, E. and Meziane, F. |
---|---|
Abstract | With the rapid advances in E-learning systems, personalisation and adaptability have now become important features in the education technology. In this paper, we describe the development of an architecture for A Personalised and Adaptable E-Learning System (APELS) that attempts to contribute to advancements in this field. APELS aims to provide a personalised and adaptable learning environment to users from the freely available resources on the Web. An ontology was employed to model a specific learning subject and to extract the relevant learning resources from the Web based on a learner’s model (the learners background, needs and learning styles). The APELS system uses natural language processing techniques to evaluate the content extracted from relevant resources against a set of learning outcomes as defined by standard curricula to enable the appropriate learning of the subject. An application in the computer science field is used to illustrate the working mechanisms of the APELS system and its evaluation based on the ACM/IEEE computing curriculum. An experimental evaluation was conducted with domain experts to evaluate whether APELS can produce the right learning material that suits the learning needs of a learner. The results show that the produced content by APELS is of a good quality and satisfies the learning outcomes for teaching purposes. |
Keywords | ACM/IEEE computing curriculum; ; Ontology; ; Dependency relation; ; E-learning; ; Key phrases; ; Keyword extraction; ; Learning styles; ; Linguistic methods; ; Natural language processing; ; Parse tree; ; Personalised E-learning |
Year | 2018 |
Journal | Education and Information Technologies |
Journal citation | Vol 24 (Issue 2), pp. 1485 - 1509 |
Publisher | Springer |
ISSN | 1573-7608 |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s10639-018-9836-x |
Web address (URL) | http://www.scopus.com/inward/record.url?eid=2-s2.0-85057332777&partnerID=MN8TOARS |
Output status | Published |
Publication dates | |
Online | 28 Nov 2018 |
16 Mar 2019 | |
Publication process dates | |
Accepted | 05 Nov 2018 |
Deposited | 05 Jun 2023 |
https://repository.derby.ac.uk/item/9z13x/an-adaptable-and-personalised-e-learning-system-applied-to-computer-science-programmes-design
5
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603
A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Describing Pulmonary Nodules Using 3D Clustering
Al-Funjan, A., Farid Meziane and Aspin, R. 2022. Describing Pulmonary Nodules Using 3D Clustering. Advanced Engineering Research. 22 (3), pp. 261-271. https://doi.org/10.23947/2687-1653-2022-22-3-261-271Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033