Ultrasound reports standardisation using rhetorical structure theory and domain ontology
Journal article
Authors | Zulkarnain, N.Z. and Meziane, F. |
---|---|
Abstract | Ultrasound reporting plays an important role in diagnosis as images produced during an ultrasound examination do not give the whole view of the medical conditions. However, in practice there are many issues that are inherent to ultrasound reporting and the most important was identified to be the lack of standardisation when producing these reports. There is a resistance to change from some radiologists preferring the free writing style, making any attempt to computerise the processing of these reports difficult. This paper explores the possibility of using Rhetorical Structure Theory (RST) together with a domain ontology to transform free-form ultrasound reports into a structured form. It discusses a new approach in segmenting and identifying rhetorical relations that are more applicable to ultrasound reports from classical RST relations. The approach was evaluated on a sample ultrasound reports where the system’s parsing was compared to the manual parsing performed by experts. The results show that discourse parsing using RST in ultrasound reports can be performed effectively using the support of a domain ontology. The results also demonstrate that the transformation of free-form ultrasound reports into a structured form can be performed with the support of RST relations identified and the domain ontology. |
Keywords | Discourse markers; ; Discourse parsing; ; Ontology; ; Rhetorical relation; ; Rhetorical structure theory; ; Structured reporting; ; Ultrasound reporting |
Year | 2019 |
Journal | Journal of Biomedical Informatics: X |
Journal citation | Vol 1 (Article: 100003) |
Publisher | Elsevier |
ISSN | 1532-0464 |
2590177X | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.yjbinx.2019.100003 |
Web address (URL) | http://www.scopus.com/inward/record.url?eid=2-s2.0-85061753373&partnerID=MN8TOARS |
Output status | Published |
Publication dates | |
Online | 12 Feb 2019 |
Mar 2019 | |
Publication process dates | |
Deposited | 05 Jun 2023 |
https://repository.derby.ac.uk/item/9z126/ultrasound-reports-standardisation-using-rhetorical-structure-theory-and-domain-ontology
2
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603
A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Describing Pulmonary Nodules Using 3D Clustering
Al-Funjan, A., Farid Meziane and Aspin, R. 2022. Describing Pulmonary Nodules Using 3D Clustering. Advanced Engineering Research. 22 (3), pp. 261-271. https://doi.org/10.23947/2687-1653-2022-22-3-261-271Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033