Assessment of perceptual distortion boundary through applying reversible watermarking to brain MR images
Journal article
Authors | Qasim, A.F., Aspin, R., Meziane, F. and Hogg, P. |
---|---|
Abstract | The digital medical workflow faces many circumstances in which the images can be manipulated during viewing, extracting and exchanging. Reversible and imperceptible watermarking approaches have the potential to enhance trust within the medical imaging pipeline through ensuring the authenticity and integrity of the images to confirm that the changes can be detected and tracked. This study concentrates on the imperceptibility issue. Unlike reversibility, for which an objective assessment can be easily made, imperceptibility is a factor of human cognition that needs to be evaluated within the human context. By defining a perceptual boundary of detecting the modification, this study enables the formation of objective guidelines for the method of data encoding and level of image/pixel modification that translates to a specific watermark magnitude. This study implements a relative Visual Grading Analysis (VGA) evaluation of 117 brain MR images (8 original and 109 watermarked), modified by varying techniques and magnitude of image/pixel modification to determine where this perceptual boundary exists and relate the point at which change becomes noticeable to the objective measures of the image fidelity evaluation. The outcomes of the visual assessment were linked to the images Peak Signal to Noise Ratio (PSNR) values, thereby identifying the visual degradation threshold. The results suggest that, for watermarking applications, if a watermark is applied to the 512×512 pixel (16 bpp grayscale) images used in the study, a subsequent assessment of PSNR=82dB or greater would mean that there would be no reason to suspect that the watermark would be visually detectable. |
Year | 2019 |
Journal | Signal Processing: Image Communication |
Journal citation | Vol 70 (Feb 2019), pp. 246-258 |
Publisher | Elseiver |
ISSN | 1879-2677 |
09235965 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.image.2018.10.007 |
Web address (URL) | http://www.scopus.com/inward/record.url?eid=2-s2.0-85056225028&partnerID=MN8TOARS |
Output status | Published |
Publication dates | Feb 2019 |
Online | 05 Nov 2018 |
Online | 12 Nov 2018 |
Publication process dates | |
Accepted | 23 Oct 2018 |
Deposited | 05 Jun 2023 |
https://repository.derby.ac.uk/item/9z13z/assessment-of-perceptual-distortion-boundary-through-applying-reversible-watermarking-to-brain-mr-images
3
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging
Hasan, A.M., Aljobouri, H.K., Al-Waely, K.N.A., Ibrahim, W.I., Jalab, H.A. and Meziane, F. 2023. Diagnosis of Breast Cancer Based on Hybrid Features Extraction in Dynamic Contrast Enhanced Magnetic Resonance Imaging. Neural Computing and Applications. pp. 1-14. https://doi.org/10.1007/s00521-023-08909-yClassification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion
Hasan, A.M., Al-Waely, N.K.N., Ajobouri, H.K., Ibrahim, R.W., Jalab, H.A. and Meziane, F. 2023. Classification Model of Breast Masses in DCE-MRI Using Kinetic Curves Features with Quantum-Raina’s Polynomial Based Fusion. Biomedical Signal Processing and Control. 84, pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105002The Impact of Arabic Diacritization on Word Embeddings
Abbache, M., Abbache, A., Xu, J.W., Meziane, F. and Wen, X.B. 2023. The Impact of Arabic Diacritization on Word Embeddings. ACM Transactions on Asian and Low-Resource Language Information Processing . pp. 1-32. https://doi.org/10.1145/3592603
A review of the generation of requirements specification in natural language using objects UML models and domain ontology
Abdalazeima, Alaa and Meziane, Farid 2021. A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science. 189, pp. 328-334. https://doi.org/10.1016/j.procs.2021.05.102Mitigation of Popularity Bias in Recommendation Systems
Karboua, S., Harrag, F., Meziane, F. and Boutadjine, A. 2022. Mitigation of Popularity Bias in Recommendation Systems. Tunisian-Algerian Joint Conference on Applied Computing. Constantine, Algeria 14 - 15 Dec 2022Describing Pulmonary Nodules Using 3D Clustering
Al-Funjan, A., Farid Meziane and Aspin, R. 2022. Describing Pulmonary Nodules Using 3D Clustering. Advanced Engineering Research. 22 (3), pp. 261-271. https://doi.org/10.23947/2687-1653-2022-22-3-261-271Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach
Swee, C.P., Labadin, J. and Meziane, F. 2022. Credit Risk Prediction for Peer-To-Peer Lending Platforms: An Explainable Machine Learning Approach. Journal of Computing and Social Informatics. 1 (2), pp. 1-16. https://doi.org/10.33736/jcsi.4761.2022DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications
Mir, F. and Meziane, F. 2022. DCOPA: a distributed clustering based on objects performances aggregation for hierarchical communications in IoT applications. Cluster Computing. 26, p. 1077–1098. https://doi.org/10.1007/s10586-022-03741-w
Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm
Almomani, Ammar, Nawasrah, Ahmad Al, Alauthman, Mohammad, Betar, Mohammed Azmi Al and Meziane, Farid 2021. Botnet detection used fast-flux technique, based on adaptive dynamic evolving spiking neural network algorithm. International Journal of Ad Hoc and Ubiquitous Computing. 36 (1), p. 50. https://doi.org/10.1016/j.cosrev.2020.100305
MRI brain classification using the quantum entropy LBP and deep-learning-based features
Hasan, Ali M., Jalab, Hamid A., Ibrahim, Rabha W., Meziane, Farid, AL-Shamasneh, Ala’a R. and Obaiys, Suzan J. 2020. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 22 (9), p. 1033. https://doi.org/10.3390/e22091033