The variances in cytokine production profiles from non- or activated THP-1, Kupffer cell and human blood derived primary macrophages following exposure to either alcohol or a panel of engineered nanomaterials
Journal article
Authors | Ali Kermanizadeh, David M. Brown and Vicki Stone |
---|---|
Abstract | The portfolio of cytokines is key to the function of macrophages as sentries of the innate immune system as well as being critical for the transition from innate to adaptive immunity. Cytokine bias is critical in the fate of macrophages into a continuum of inflammatory to anti-inflammatory macrophages. Due to advances in the field of toxicology, increasingly advanced multi-cellular in vitro safety assessment models are being developed in order to allow for a better predication of potential adverse effects in humans with many of these models include a macrophage population. The selection of the correct macrophage cells in these advanced in vitro models is critical for a physiologically relevant and realistic immune response. In this study we investigated cytokine response profile (IL1-β, IL6, IL10 and TNF-α) of activated and non-activated THP-1 (immortalized monocyte-like cell line), primary human Kupffer cells (liver resident macrophages) and human primary peripheral blood mononuclear cells following exposure of a panel of nanomaterials or ethanol. The data demonstrated that the THP-1 cell line are not great cytokine producers. The PBMC appear to be a good in vitro surrogate for circulating/pro-inflammatory macrophages but are not a suitable replacement for Kupffer cells. The findings from this study highlight the necessity for the selection of appropriate macrophages populations to meet the specific physiological requirements of in vitro experiment. |
Keywords | Kupffer; Cytokines; marcophages |
Year | 2019 |
Journal | PLos ONE |
Journal citation | Vol 14 (Issue 8) |
Publisher | PLOS ONE |
ISSN | 1932-6203 |
Digital Object Identifier (DOI) | https://doi.org/10.1371/journal.pone.0220974 |
Web address (URL) | https://doi.org/10.1371/journal.pone.0220974 |
Output status | Published |
Publication dates | 08 Aug 2019 |
Publication process dates | |
Accepted | 26 Jul 2019 |
Deposited | 12 Jun 2023 |
Editors | Rasheed Ahmad |
https://repository.derby.ac.uk/item/9z362/the-variances-in-cytokine-production-profiles-from-non-or-activated-thp-1-kupffer-cell-and-human-blood-derived-primary-macrophages-following-exposure-to-either-alcohol-or-a-panel-of-engineered
34
total views0
total downloads1
views this month0
downloads this month
Export as
Related outputs
A comprehensive toxicological analysis of panel of unregulated e-cigarettes to human health
Guraka, A., Mierlea, S., Drake, S., Shawa, T. S., Waldron, S., Corcoran, M., Dowse, D., Walkman, D., Burn, L., Sivasubramaniam, S. and Kermanizadeh, A. 2024. A comprehensive toxicological analysis of panel of unregulated e-cigarettes to human health. Toxicology. 509, pp. 1-12. https://doi.org/10.1016/j.tox.2024.153964A Review of Toxicological Profile of Fentanyl—A 2024 Update
Kermanizadeh, A. and Williamson, J. 2024. A Review of Toxicological Profile of Fentanyl—A 2024 Update. Toxics. 12 (10), pp. 1-14. https://doi.org/10.3390/toxics12100690Co-Culture of Gut Bacteria and Metabolite Extraction Using Fast Vacuum Filtration and Centrifugation
Guraka, A., Duff, R., Waldron, J., Tripathi, G. and Kermanizadeh, A. 2024. Co-Culture of Gut Bacteria and Metabolite Extraction Using Fast Vacuum Filtration and Centrifugation. Methods and Protocols. 7 (74), pp. 1-13. https://doi.org/10.3390/mps7050074Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure
Guraka, A., Souch, G., Duff, R., Brown, D., Moritz, W. and Ali Kermanizadeh 2024. Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure. Chemosphere. pp. 1-36. https://doi.org/10.1016/j.chemosphere.2024.143032Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives
Hristozov, D., Badetti, E., Bigini, P., Brunelli, A., Dekkers, S., Diomede, L., Doak, S. K., Fransman, W., Gajewicz-Skretna, A., Giubilato, E., Gómez-Cuadrado, L., Grafström, R., Gutleb, R. C., Halappanavar, S., Hischier, R., Hunt, N., Katsumiti, A., Kermanizadeh, A., Marcomini, A., Moschini, E., Oomen, E., Pizzol, L., Rumbo, C., Schmid, O., Shandilya, N., Stone, V., Stoycheva, S, Stoeger, T., Merino, B. S., Tran, L., Tsiliki, G., Vogel, U. B., Wohlleben, W. and Zabeo, A. 2024. Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives. NanoImpact. pp. 1-48. https://doi.org/10.1016/j.impact.2024.100523Drug induced liver injury - a 2023 update.
Allison, R., Guraka, A., Shawa, I., Tripathi, G., Moritz, W. and Kermanizadeh, A. 2023. Drug induced liver injury - a 2023 update. Journal of Toxicology and Environmental Health, Part B. 26 (8), pp. 1-26. https://doi.org/10.1080/10937404.2023.2261848AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research
Yu, H., O'Neill, S. and Kermanizadeh, A. 2023. AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research. Bioengineering. 10 (10), pp. 1-18. https://doi.org/10.3390/bioengineering10101134