Hepatic hazard assessment of silver nanoparticle exposure in healthy and chronically alcohol fed mice.
Journal article
Authors | Kermanizadeh A, Jacobsen NR, Roursgaard M, Loft S and Møller P |
---|---|
Abstract | Silver (Ag) nanoparticles (NPs) are currently among one of the most widely used nanomaterials. This in turn, implies an increased risk of human and environmental exposure. Alcohol abuse is a global issue with millions of people in the general population affected by the associated adverse effects. The excessive consumption of alcohol is a prominent cause of chronic liver disease which manifest in multiple disorders. In this study, the adverse health effects of Ag NP exposure were investigated in models of alcoholic hepatic disease in vitro and in vivo. The data showed that Ag NP induced hepatic health effects were aggravated in the alcohol pretreated mice in comparison to controls with regards to an organ specific inflammatory response, changes in blood biochemistry, acute phase response and hepatic pathology. In addition, alcoholic disease influenced the organ’s ability for recovery post-NP challenge. Additionally, it is demonstrated that the in vivo data correlated well with in vitro findings where ethanol pretreatment of hepatocytes resulted in significantly increased inflammatory response post-Ag NP exposure. To the best of our knowledge this is the first study of its kind to investigate nano-sized material-induced hepatic pathology in models representative of susceptible individuals (those with pre-existing alcohol liver disease) within the population. This is an area of research in the field of nanotoxicology, and in particular with regard to NP risk assessment that is almost entirely overlooked. |
Keywords | Acute phase response; Ag NPs; Alcohol abuse; Inflammation; Liver; Pathology |
Year | 2017 |
Journal | Toxicological Sciences |
Journal citation | Vol 158 (Issue 1), pp. 176 - 187 |
Publisher | Oxford University Press |
ISSN | 10966080 |
1096-0929 | |
Digital Object Identifier (DOI) | https://doi.org/10.1093/toxsci/kfx080 |
Web address (URL) | http://europepmc.org/abstract/med/28453772 |
Output status | Published |
Publication dates | |
Online | 27 Apr 2017 |
Online | Jul 2017 |
Publication process dates | |
Deposited | 15 Jun 2023 |
https://repository.derby.ac.uk/item/9z481/hepatic-hazard-assessment-of-silver-nanoparticle-exposure-in-healthy-and-chronically-alcohol-fed-mice
34
total views0
total downloads3
views this month0
downloads this month
Export as
Related outputs
A comprehensive toxicological analysis of panel of unregulated e-cigarettes to human health
Guraka, A., Mierlea, S., Drake, S., Shawa, T. S., Waldron, S., Corcoran, M., Dowse, D., Walkman, D., Burn, L., Sivasubramaniam, S. and Kermanizadeh, A. 2024. A comprehensive toxicological analysis of panel of unregulated e-cigarettes to human health. Toxicology. 509, pp. 1-12. https://doi.org/10.1016/j.tox.2024.153964A Review of Toxicological Profile of Fentanyl—A 2024 Update
Kermanizadeh, A. and Williamson, J. 2024. A Review of Toxicological Profile of Fentanyl—A 2024 Update. Toxics. 12 (10), pp. 1-14. https://doi.org/10.3390/toxics12100690Co-Culture of Gut Bacteria and Metabolite Extraction Using Fast Vacuum Filtration and Centrifugation
Guraka, A., Duff, R., Waldron, J., Tripathi, G. and Kermanizadeh, A. 2024. Co-Culture of Gut Bacteria and Metabolite Extraction Using Fast Vacuum Filtration and Centrifugation. Methods and Protocols. 7 (74), pp. 1-13. https://doi.org/10.3390/mps7050074Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure
Guraka, A., Souch, G., Duff, R., Brown, D., Moritz, W. and Ali Kermanizadeh 2024. Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure. Chemosphere. pp. 1-36. https://doi.org/10.1016/j.chemosphere.2024.143032Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives
Hristozov, D., Badetti, E., Bigini, P., Brunelli, A., Dekkers, S., Diomede, L., Doak, S. K., Fransman, W., Gajewicz-Skretna, A., Giubilato, E., Gómez-Cuadrado, L., Grafström, R., Gutleb, R. C., Halappanavar, S., Hischier, R., Hunt, N., Katsumiti, A., Kermanizadeh, A., Marcomini, A., Moschini, E., Oomen, E., Pizzol, L., Rumbo, C., Schmid, O., Shandilya, N., Stone, V., Stoycheva, S, Stoeger, T., Merino, B. S., Tran, L., Tsiliki, G., Vogel, U. B., Wohlleben, W. and Zabeo, A. 2024. Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives. NanoImpact. pp. 1-48. https://doi.org/10.1016/j.impact.2024.100523Drug induced liver injury - a 2023 update.
Allison, R., Guraka, A., Shawa, I., Tripathi, G., Moritz, W. and Kermanizadeh, A. 2023. Drug induced liver injury - a 2023 update. Journal of Toxicology and Environmental Health, Part B. 26 (8), pp. 1-26. https://doi.org/10.1080/10937404.2023.2261848AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research
Yu, H., O'Neill, S. and Kermanizadeh, A. 2023. AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research. Bioengineering. 10 (10), pp. 1-18. https://doi.org/10.3390/bioengineering10101134![](/~544/ssr/default-thumbnail.png)