Inflammation and vascular effects after repeated intratracheal instillations of carbon black and lipopolysaccharide
Journal article
Authors | Christophersen, D.V., Jacobsen, N.R., Jensen, D.M., Kermanizadeh, A., Sheykhzade, M., Loft, S., Voge, U., Wallin, H. and Møller, P. |
---|---|
Abstract | Inflammation and oxidative stress are considered the main drivers of vasomotor dysfunction and progression of atherosclerosis after inhalation of particulate matter. In addition, new studies have shown that particle exposure can induce the level of bioactive mediators in serum, driving vascular- and systemic toxicity. We aimed to investigate if pulmonary inflammation would accelerate nanoparticle-induced atherosclerotic plaque progression in Apolipoprotein E knockout (ApoE-/-) mice. ApoE -/- mice were exposed to vehicle, 8.53 or 25.6 μg nanosized carbon black (CB) alone or spiked with LPS (0.2 μg/mouse/exposure; once a week for 10 weeks). Inflammation was determined by counting cells in bronchoalveolar lavage fluid. Serum Amyloid A3 (Saa3) expression and glutathione status were determined in lung tissue. Plaque progression was assessed in the aorta and the brachiocephalic artery. The effect of vasoactive mediators in plasma of exposed ApoE-/- mice was assessed in aorta rings isolated from naïve C57BL/6 mice. Pulmonary exposure to CB and/or LPS resulted in pulmonary inflammation with a robust influx of neutrophils. The CB exposure did not promote plaque progression in aorta or BCA. Incubation with 0.5% plasma extracted from CB-exposed ApoE-/- mice caused vasoconstriction in aorta rings isolated from naïve mice; this effect was abolished by the treatment with the serotonin receptor antagonist Ketanserin. In conclusion, repeated pulmonary exposure to nanosized CB and LPS caused lung inflammation without progression of atherosclerosis in ApoE-/- mice. Nevertheless, plasma extracted from mice exposed to nanosized CB induced vasoconstriction in aortas of naïve wild-type mice, an effect possibly related to increased plasma serotonin. |
Keywords | Inflammation; Vascular effects; Intratracheal Instillations; Carbon Black ; Lipopolysaccharide |
Year | 2016 |
Journal | PLos ONE |
Journal citation | Vol 11 (Issue 8, Article: e0160731) |
Publisher | PLOS ONE |
ISSN | 19326203 |
Digital Object Identifier (DOI) | https://doi.org/10.1371/journal.pone.0160731 |
Web address (URL) | http://www.scopus.com/inward/record.url?eid=2-s2.0-84991449261&partnerID=MN8TOARS |
Output status | Published |
Publication dates | |
Online | 29 Aug 2016 |
Publication process dates | |
Accepted | 25 Jul 2016 |
Deposited | 15 Jun 2023 |
https://repository.derby.ac.uk/item/9z47x/inflammation-and-vascular-effects-after-repeated-intratracheal-instillations-of-carbon-black-and-lipopolysaccharide
28
total views0
total downloads1
views this month0
downloads this month
Export as
Related outputs
A comprehensive toxicological analysis of panel of unregulated e-cigarettes to human health
Guraka, A., Mierlea, S., Drake, S., Shawa, T. S., Waldron, S., Corcoran, M., Dowse, D., Walkman, D., Burn, L., Sivasubramaniam, S. and Kermanizadeh, A. 2024. A comprehensive toxicological analysis of panel of unregulated e-cigarettes to human health. Toxicology. 509, pp. 1-12. https://doi.org/10.1016/j.tox.2024.153964A Review of Toxicological Profile of Fentanyl—A 2024 Update
Kermanizadeh, A. and Williamson, J. 2024. A Review of Toxicological Profile of Fentanyl—A 2024 Update. Toxics. 12 (10), pp. 1-14. https://doi.org/10.3390/toxics12100690Co-Culture of Gut Bacteria and Metabolite Extraction Using Fast Vacuum Filtration and Centrifugation
Guraka, A., Duff, R., Waldron, J., Tripathi, G. and Kermanizadeh, A. 2024. Co-Culture of Gut Bacteria and Metabolite Extraction Using Fast Vacuum Filtration and Centrifugation. Methods and Protocols. 7 (74), pp. 1-13. https://doi.org/10.3390/mps7050074Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure
Guraka, A., Souch, G., Duff, R., Brown, D., Moritz, W. and Ali Kermanizadeh 2024. Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure. Chemosphere. pp. 1-36. https://doi.org/10.1016/j.chemosphere.2024.143032Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives
Hristozov, D., Badetti, E., Bigini, P., Brunelli, A., Dekkers, S., Diomede, L., Doak, S. K., Fransman, W., Gajewicz-Skretna, A., Giubilato, E., Gómez-Cuadrado, L., Grafström, R., Gutleb, R. C., Halappanavar, S., Hischier, R., Hunt, N., Katsumiti, A., Kermanizadeh, A., Marcomini, A., Moschini, E., Oomen, E., Pizzol, L., Rumbo, C., Schmid, O., Shandilya, N., Stone, V., Stoycheva, S, Stoeger, T., Merino, B. S., Tran, L., Tsiliki, G., Vogel, U. B., Wohlleben, W. and Zabeo, A. 2024. Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives. NanoImpact. pp. 1-48. https://doi.org/10.1016/j.impact.2024.100523Drug induced liver injury - a 2023 update.
Allison, R., Guraka, A., Shawa, I., Tripathi, G., Moritz, W. and Kermanizadeh, A. 2023. Drug induced liver injury - a 2023 update. Journal of Toxicology and Environmental Health, Part B. 26 (8), pp. 1-26. https://doi.org/10.1080/10937404.2023.2261848AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research
Yu, H., O'Neill, S. and Kermanizadeh, A. 2023. AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research. Bioengineering. 10 (10), pp. 1-18. https://doi.org/10.3390/bioengineering10101134